«Финансы и кредит»
 

Реферирование и индексирование

Russian Science Citation Index
Referativny Zhurnal VINITI RAS
Worldcat
LCCN Permalink
Google Scholar

Электронные версии в PDF

EBSCOhost
Eastview
Elibrary
Biblioclub

Современные подходы к применению методов интеллектуального анализа данных в задаче кредитного скоринга

Журнал «Финансы и кредит»
т. 23, вып. 34, сентябрь 2017

Получена: 04.07.2017

Получена в доработанном виде: 09.08.2017

Одобрена: 24.08.2017

Доступна онлайн: 19.09.2017

Рубрика: Банковская деятельность

Коды JEL: C38, C55, D81

Страницы: 2044–2060

https://doi.org/10.24891/fc.23.34.2044

Волкова Е.С. кандидат физико-математических наук, доцент Департамента анализа данных, принятия решений и финансовых технологий, Финансовый университет при Правительстве РФ, Москва, Российская Федерация EVolkova@fa.ru

Гисин В.Б. кандидат физико-математических наук, профессор Департамента анализа данных, принятия решений и финансовых технологий, Финансовый университет при Правительстве РФ, Москва, Российская Федерация VGisin@fa.ru

Соловьев В.И. доктор экономических наук, профессор, руководитель Департамента анализа данных, принятия решений и финансовых технологий, Финансовый университет при Правительстве РФ, Москва, Российская Федерация VSoloviev@fa.ru

Предмет. Рост спроса на потребительские кредиты привел к увеличению конкуренции на рынке кредитования. Банки и другие кредитные институты столкнулись с необходимостью обрабатывать большие объемы данных со все возрастающей скоростью. Современные требования к объему обрабатываемых данных и скорости их обработки таковы, что процессы должны быть практически полностью автоматизированы. Эти требования распространяются не только на непосредственную цифровую обработку, но и на процедуры настройки, адаптации и даже построения соответствующих количественных моделей. Традиционно используемые в кредитовании модели, такие как скоринг, стали комбинироваться с новыми вычислительными методами, которые относят к области так называемого машинного обучения или интеллектуального анализа данных. В статье приводится обзор современного состояния исследований в этой области.
Цели. Классификация современных методов кредитного скоринга. Описание моделей сравнения эффективности его различных методов.
Методология. Изучение актуальных научных публикаций по теме статьи, представленных в Google Scholar.
Результаты. Представлена классификация современных методов интеллектуального анализа данных, применяемых в кредитном скоринге.
Выводы. Требующийся в современных условиях уровень эффективности могут обеспечить модели кредитного скоринга, использующие процедуры машинного обучения и гибридные модели, в которых применяются комбинированные методы.

Ключевые слова: кредитный скоринг, машинное обучение, интеллектуальная обработка данных

Список литературы:

  1. Durand D. Risk Elements in Consumer Installment Financing. New York, National Bureau of Economic Research Books, 1941, 163 p.
  2. Hand D.J., Henley W.E. Statistical Classification Methods in Consumer Credit Scoring: A Review. Journal of the Royal Statistical Society: Series A (Statistics in Society), 1997, vol. 160, iss. 3, pp. 523–541. doi: 10.1111/j.1467-985X.1997.00078.x
  3. García V., Marqués A.I., Sánchez J.S. An Insight into the Experimental Design for Credit Risk and Corporate Bankruptcy Prediction Systems. Journal of Intelligent Information Systems, 2015, vol. 44, iss. 1, pp. 159–189. URL: https://doi.org/10.1007/s10844-014-0333-4
  4. Lessmann S., Seow H.-V., Baesens B., Thomas L.C. Benchmarking State-of-the-Art Classification Algorithms for Credit Scoring: An Update of Research. European Journal of Operational Research, 2015, vol. 247, no. 1, pp. 124–136. URL: https://www.business-school.ed.ac.uk/waf/crc_archive/2013/42.pdf doi: 10.1016/j.ejor.2015.05.030
  5. Hand D.J., Kelly M.G. Superscorecards. IMA Journal of Management Mathematics, 2002, vol. 13, iss. 4, pp. 273–281.
  6. Yap B.W., Ong S.H., Husain N.H.M. Using Data Mining to Improve Assessment of Credit Worthiness via Credit Scoring Models. Expert Systems with Applications, 2011, vol. 38, iss. 10, pp. 13274–13283. doi: 10.1016/j.eswa.2011.04.147
  7. Pavlidis N.G., Tasoulis D.K., Adams N.M., Hand D.J. Adaptive Consumer Credit Classification. Journal of the Operational Research Society, 2012, vol. 63, iss. 12, pp. 1645–1654. doi: 10.1057/jors.2012.15
  8. Khemais Z., Nesrine D., Mohamed M. Credit Scoring and Default Risk Prediction: A Comparative Study between Discriminant Analysis & Logistic Regression. International Journal of Economics and Finance, 2016, vol. 8, iss. 4, pp. 39–53. URL: http://dx.doi.org/10.5539/ijef.v8n4p39
  9. Louzada F., Anacleto-Junior O., Candolo C., Mazucheli J. Poly-bagging Predictors for Classification Modelling for Credit Scoring. Expert Systems with Applications, 2011, vol. 38, iss. 10, pp. 12717–12720. URL: https://doi.org/10.1016/j.eswa.2011.04.059
  10. Li Z., Tianb Y., Li K. et al. Reject Inference in Credit Scoring Using Support Vector Machines. Expert Systems with Applications, 2017, vol. 74, pp. 105–114. URL: https://doi.org/10.1016/j.eswa.2017.01.011
  11. Fisher R.A. The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics, 1936, vol. 7, iss. 2, pp. 179–188. doi: 10.1111/j.1469-1809.1936.tb02137.x
  12. Eisenbeis R.A. Problems in Applying Discriminant Analysis in Credit Scoring Models. Journal of Banking & Finance, 1978, vol. 2, iss. 3, pp. 205–219. doi: 10.1016/0378-4266(78)90012-2
  13. Mylonakis J., Diacogiannis G. Evaluating the Likelihood of Using Linear Discriminant Analysis as a Commercial Bank Card Owners Credit Scoring Model. International Business Research, 2010, vol. 3, no. 2, pp. 9–20.
  14. Akkoç S. An Empirical Comparison of Conventional Techniques, Neural Networks and the Three Stage Hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) Model for Credit Scoring Analysis: The case of Turkish credit card data. European Journal of Operational Research, 2012, vol. 222, iss. 1, pp. 168–178. URL: https://doi.org/10.1016/j.ejor.2012.04.009
  15. Falangis K., Glen J.J. Heuristics for Feature Selection in Mathematical Programming Discriminant Analysis Models. Journal of Operational Research Society, 2010, vol. 61, no. 5, pp. 804–812.
  16. Breiman L., Friedman J., Stone C.J., Olshen R.A. Classification and Regression Trees. Monterey, CA, Wadsworth & Brooks/Cole Advanced Books & Software, 1984, 368 p.
  17. Loh W.-Y. Fifty Years of Classification and Regression Trees. International Statistical Review, 2014, vol. 82, iss. 3, pp. 329–348. doi: 10.1111/insr.12016
  18. Finlay S.M. Multiple Classifier Architectures and Their Application to Credit Risk Assessment. European Journal of Operational Research, 2011, vol. 210, iss. 2, pp. 368–378. URL: http://dx.doi.org/10.1016/j.ejor.2010.09.029
  19. Zhang D., Zhou X., Leung S.C.H., Zheng J. Vertical Bagging Decision Trees Model for Credit Scoring. Expert Systems with Applications, 2010, vol. 37, iss. 12, pp. 7838–7843. URL: https://doi.org/10.1016/j.eswa.2010.04.054
  20. Hu Q., Che X., Zhang L. et al. Rank Entropy-Based Decision Trees for Monotonic Classification. IEEE Transactions on Knowledge and Data Engineering, 2012, vol. 24, iss. 11, pp. 2052–2064. doi: 10.1109/TKDE.2011.149
  21. Hayashi Y., Tanaka Y., Takagi T. et al. Recursive-Rule Extraction Algorithm with J48graft and Applications to Generating Credit Scores. Journal of Artificial Intelligence and Soft Computing Research, 2016, vol. 6, iss. 1, pp. 35–44. URL: https://doi.org/10.1515/jaiscr-2016-0004
  22. Vapnik V. Statistical Learning Theory. New York, John Wiley, 1998, 768 p.
  23. Bellotti T., Crook J. Support Vector Machines for Credit Scoring and Discovery of Significant Features. Expert Systems with Applications, 2009, vol. 36, iss. 2-2, pp. 3302–3308. doi: 10.1016/j.eswa.2008.01.005
  24. Chen W., Ma C., Ma L. Mining the Customer Credit Using Hybrid Support Vector Machine Technique. Expert Systems with Applications, 2009, vol. 36, iss. 4, pp. 7611–7616. URL: https://doi.org/10.1016/j.eswa.2008.09.054
  25. Ling Y., Cao Q., Zhang H. Credit Scoring Using Multi-Kernel Support Vector Machine and Chaos Particle Swarm Optimization. International Journal of Computational Intelligence and Applications, 2012, vol. 11, iss. 3, pp. 12500198:1–12500198:13.
  26. Friedman N., Geiger D., Goldszmidt M. Bayesian Network Classifiers. Machine Learning, 1997, vol. 29, iss. 2-3, pp. 131–163. URL: https://doi.org/10.1023/A:1007465528199
  27. Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, 1988, 552 p.
  28. Giudici P. Bayesian Data Mining, with Application to Benchmarking and Credit Scoring. Applied Stochastic Models in Business and Industry, 2001, vol. 17, iss. 1, pp. 69–81.
  29. Gemela J. Financial Analysis Using Bayesian Networks. Applied Stochastic Models in Business and Industry, 2001, vol. 17, iss. 1, pp. 57–67.
  30. Antonakis A.C., Sfakianakis M.E. Naïve Bayes as a Means of Constructing Application Scorecards. Advances in Doctoral Research in Management, 2008, vol. 2, pp. 47–62.
  31. Antonakis A.C., Sfakianakis M.E. Assessing Naïve Bayes as a Method for Screening Credit Applicants. Journal of Applied Statistics, 2009, vol. 36, iss. 5-6, pp. 537–545.
  32. Wu W.-W. Improving Classification Accuracy and Causal Knowledge for Better Credit Decisions. International Journal of Neural Systems, 2011, vol. 21, iss. 4, pp. 297–309.
  33. Zhu H., Beling P.A., Overstreet G.A. A Bayesian Framework for the Combination of Classifier Outputs. Journal of the Operational Research Society, 2002, vol. 53, iss. 7, pp. 719–727.
  34. West D. Neural Network Credit Scoring Models. Computers & Operations Research, 2000, vol. 27, iss. 11-12, pp. 1131–1152. doi: 10.1016/S0305-0548(99)00149-5
  35. Ong C.-S., Huang J.-J., Tzeng G.-H. Building Credit Scoring Models Using Genetic Programming. Expert Systems with Applications, 2005, vol. 29, iss. 1, pp. 41–47. doi: 10.1016/j.eswa.2005.01.003
  36. Breiman L. Bagging Predictors. Machine Learning, 1996, vol. 24, iss. 2, pp. 123–140. URL: https://doi.org/10.1007/BF00058655
  37. Wolpert D.H. Stacked Generalization. Neural Networks, 1992, vol. 5, no. 2, pp. 241–259.
  38. Vukovic S., Delibašić B., Uzelac A., Suknovic M. A Case-Based Reasoning Model That Uses Preference Theory Functions for Credit Scoring. Expert Systems with Applications, 2012, vol. 39, iss. 9, pp. 8389–8395. doi: 10.1016/j.eswa.2012.01.181
  39. Marqués A.I., García V., Sánchez J.S. Two-Level Classifier Ensembles for Credit Risk Assessment. Expert Systems with Applications, 2012, vol. 39, iss. 12, pp. 10916–10922.
  40. Hoffmann F., Baesens B., Mues C. et al. Inferring Descriptive and Approximate Fuzzy Rules for Credit Scoring Using Evolutionary Algorithms. European Journal of Operational Research, 2007, vol. 177, iss. 1, pp. 540–555. doi: 10.1016/j.ejor.2005.09.044
  41. Ignatius J., Hatami-Marbini A., Rahman A. et al. A Fuzzy Decision Support System for Credit Scoring. Neural Computing and Applications, 2016, vol. 27, no. 1, pp. 1–17. URL: https://doi.org/10.1007/s00521-016-2592-1
  42. Lahsasna A., Ainon R.N., Wah T.Y. Credit Risk Evaluation Decision Modeling Through Optimized Fuzzy Classifier. Proc. International Symposium on Information Technology, 2008. IEEE, 2008, vol. 1, pp. 1–8.
  43. Kaur A. et al. Fuzzy Rule based Expert System for Evaluating Defaulter Risk in Banking Sector. Indian Journal of Science and Technology, 2016, vol. 9, iss. 28, pp. 1–6. doi: 10.17485/ijst/2016/v9i28/98395
  44. Malhotra R., Malhotra D.K. Differentiating Between Good Credits and Bad Credits Using Neuro-Fuzzy Systems. European Journal of Operational Research, 2002, vol. 136, iss. 1, pp. 190–211.
  45. Clemen R.T., Murphy A.H., Winkler R.L. Screening Probability Forecasts: Contrasts Between Choosing and Combining. International Journal of Forecasting, 1995, vol. 11, iss. 1, pp. 133–145.
  46. DeGroot M.H., Fienberg S.E. The Comparison and Evaluation of Forecasters. The Statistician: Journal of the Institute of Statisticians, 1983, vol. 32, no. 1/2, pp. 12–22.
  47. DeGroot M., Eriksson E.A. Probability Forecasting, Stochastic Dominance, and the Lorenz Curve. Bayesian Statistics, 1985, vol. 2, pp. 99–118.

Посмотреть другие статьи номера »

 

ISSN 2311-8709 (Online)
ISSN 2071-4688 (Print)

Свежий номер журнала

т. 23, вып. 42, ноябрь 2017

Другие номера журнала