«Национальные интересы: приоритеты и безопасность»
 

Реферирование и индексирование

Russian Science Citation Index
Referativny Zhurnal VINITI RAS
Worldcat
LCCN Permalink
Google Scholar

Электронные версии в PDF

EBSCOhost
Eastview
Elibrary
Biblioclub

Иерархические копулы в моделировании кредитного риска

Журнал «Национальные интересы: приоритеты и безопасность»
т. 13, вып. 6, июнь 2017

Получена: 28.04.2017

Получена в доработанном виде: 15.05.2017

Одобрена: 09.06.2017

Доступна онлайн: 29.06.2017

Рубрика: НАЦИОНАЛЬНЫЕ ИНТЕРЕСЫ

Коды JEL: С58, G17

Страницы: 1032-1044

https://doi.org/10.24891/ni.13.6.1032

Казакова К.А. аспирантка кафедры мировой экономики и финансов, Астраханский государственный университет, Астрахань, Российская Федерация kristinakazakova0309@gmail.com

Князев А.Г. кандидат физико-математических наук, доцент, заведующий кафедрой математики и методики ее преподавания, Астраханский государственный университет, Астрахань, Российская Федерация agkniazev@mail.ru

Лепёхин О.А. кандидат экономических наук, заведующий кафедрой мировой экономики и финансов, Астраханский государственный университет, Астрахань, Российская Федерация okmb07@yandex.ru

Предмет. Проблема оценки и управления банковскими рисками в период финансовой нестабильности приобретает на сегодняшний день глобальный характер. В условиях постоянно усиливающихся процессов интернационализации экономических взаимосвязей важно обеспечить приобщение финансовой системы регулирования банковских рисков страны к общепринятым международным стандартам посредством выработки эффективной системы инициативного стресс-тестирования участников банковской сферы. В настоящем исследовании проведено построение экономико-математической модели просроченной кредитной задолженности, основу которой представляют копулярные функции, позволяющие моделировать негауссовский характер распределения финансовых рисков, в частности кредитного риска.
Цели. Моделирование совместных распределений рядов просроченной ссудной задолженности в целях дальнейшего прогнозирования объемов кредитного риска. Посредством полученных результатов прогнозирования планируется провести оценку эффективности методов формирования резерва на возможные потери с последующим определением рационального подхода к системе резервных отчислений.
Методология. Рассмотрена возможность применения иерархических копулярных моделей для построения совместных распределений рядов просроченной кредитной задолженности банковских учреждений, выступающей в качестве основы для дальнейшего вычисления прогнозных значений просроченной задолженности по выданным ссудам.
Результаты. Построена и оценена многомерная копулярная модель просроченной ссудной задолженности с иерархической структурой. На основании смоделированной многомерной зависимости вычислены прогнозные значения просроченной кредитной задолженности, которые можно использовать в качестве расчетных размеров резервов на ссудные потери. Рассчитанные резервы оказались достаточными для покрытия реальных значений просроченной задолженности и в большинстве случаев – значительно меньше установленных в соответствии с Положением ЦБ РФ № 254-П о резервных нормах на кредитные потери.
Выводы. Продемонстрированная многомерная копулярная модель просроченной кредитной задолженности в полной мере может выступать основой эффективных систем риск-менеджмента в кредитных организациях.

Ключевые слова: банковский резерв, кредитный риск, просроченная кредитная задолженность, копулярная модель, прогнозирование

Список литературы:

  1. Бологов Я.В. Оценка риска кредитного портфеля с использованием копула-функций. М.: Синергия Пресс, 2013. 22 с.
  2. Фантаццини Д. Управление кредитным риском // Прикладная эконометрика. 2008. Т 12. № 4. C. 84–137.
  3. Фантаццини Д. Эконометрический анализ финансовых данных в задачах управления риском // Прикладная эконометрика. 2008. Т. 10. № 2. C. 105–138.
  4. Фантаццини Д. Моделирование многомерных распределений с использованием копула-функций // Прикладная эконометрика. 2011. № 2. С. 98–134.
  5. Nelsen R.B. An Introduction to Copulas. New York, Springer, 2006. 269 p.
  6. Aas K., Czado C., Frigessi A., Bakken H. Pair-copula constructions of multiple dependence // Insurance: Mathematics and Economics. 2009. Vol. 44. Iss. 2. P. 182–198. URL: https://doi.org/10.1016/j.insmatheco.2007.02.001
  7. Czado C., Brechmann E.C., Gruber L. Selection of Vine Copulas. In: Copulae in Mathematical and Quantitative Finance. Springer-Verlag Berlin Heidelberg, 2013.
  8. Травкин А.И. Построение конструкций из парных копул на основе эмпирических копул хвостов на примере российского рынка акций: материалы XV Апрельской международной научной конференции по проблемам развития экономики и общества. М.: НИУ ВШЭ, 2015. Кн. 1. С. 387–400.
  9. Hering C., Hofert M., Mai J.-F., Scherer M. Constructing nested Archimedean copulas with Lévy subordinators // Journal of Multivariate Analysis. 2010. Vol. 101. P. 1428–1433. URL: https://doi.org/10.1016/j.jmva.2009.10.005
  10. Hofert M., Scherer M. CDO pricing with nested Archimedean copulas // Quantitative Finance. 2011. Vol. 11. Iss. 5. P. 775–787. URL: http://dx.doi.org/10.1080/14697680903508479
  11. Hofert M., Mächler M., McNeil A.J. Archimedean Copulas in High Dimensions: Estimators and Numerical Challenges Motivated by Financial Applications // Journal de la Société Française de Statistique. 2013. Vol. 154. Iss. 1. P. 25–63.
  12. Hansen B.E. Autoregressive conditional density estimation // International Economic Review. 1994. Vol. 35. Iss. 3. P. 705–730.
  13. Bolstad W.M. Introduction to Bayesian Statistics: Second Edition. John Wiley & Sons, 2007. 464 p.

Посмотреть другие статьи номера »

 

ISSN 2311-875X (Online)
ISSN 2073-2872 (Print)

Свежий номер журнала

т. 13, вып. 10, октябрь 2017

Другие номера журнала